HEAT TRANSFER TO AN ISOTHERMAL FLAT PLATE
IN TURBULENT FLOW OF A LIQUID OVER A WIDE
RANGE OF PRANDTL AND REYNOLDS NUMBERS

A. Sh, Dorfman and O, D. Lipovetskaya UDC 536.245:532.517.4

The study of heat transfer in turbulent flow over a flat plate is very important, not only because
this situation frequently arises in practice, but also in that data for an isothermal flat plate are
used to calculate heat transfer in more complex cases., In particular, such data are necessary
when one uses the limiting relative laws which allow calculation of the effect of compressibility,
pressure gradient, blowing, and other perturbing factors [1]. Most papers dealing with heat trans-
fer for an isothermal flat plate refer to comparatively low Re values, when the velocity distri-
bution in the boundary layer over almost its entire thickness can be described by the universal
law of the wall. However, as Re increases there is an increasing layer adjacent to the outer
boundary in which the velocity distribution cannot be described by the law of the wall, and there-
fore the results obtained for low Re are inapplicable, In the present paper coefficients of heat
transfer from a turbulent flow to an isothermal flat plate have been obtained by numerical inte-
gration of the thermal boundary-layer equations over a wide range of the parameters 3-+10° =
Re = 2.5-10', 1072 = Pr = 10,

Works [2-5] made use of equilibrium turbulent boundary layers characterized by a constant dimension-
less pressure gradient 8= 6*7“,'1dp/dx. By integrating the dynamic layer equations Mellor and Gibson [5]
calculated the velocity defect profiles for layers for various values of 3, and in [6] this method of relating the
velocity defect profiles with the universal law of the wall profiles was used, and a constituent function was
proposed to determine the turbulent viscosity coefficient. Here the velocity and turbulent viscosity distribu-
tions in the layer were described by functions of the dimensionless coordinate 5 = y/A, where A = 6*/VCf/2,
depending on the parameters g and Rex = 6* Uy,

For these conditions and for a constant value of the turbulent Prandt! number Pry Dorfman [7] obtained
solutions of the thermal boundary-layer equation for gradient equilibrium flows and arbitrary surface temper-
ature distribution,

For the case considered here — anisothermal plate (T, = const, § = 0) — these formulas have the form
0 = (T — Te(Ty — T) = Go(9), St(c; 2Pr)g,, @
where Gy(¢) is a function determined by integrating the ordinary differential equation given in [7]; gy = — 281/

Re*)i/z((pi/zG'(,)w_:o; By is aparameter dependingon gand Re, [5]; and ¢ is a variable uniquely related to the
variable n [7],

' n
¢ = |31V0_f/E ’ u/Udn. (2)
0 n . .

In the calculations the turbulent Prandtl number Pr, was assumed equal to unity, For large values of
Prandtl number, when the thermal layer is located in the viscous sublayer, there is appreciable attenuation of
fluctuations in the viscous sublayer, It is also assumed (e.g., in [8]), that the turbulent viscosity coefficient
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Fig, 1

is proportional to the fourth power of the distance from the wall, For Pr < 1, when the thermal layer is thick-
er than the dynamic layer, it is assumed that the turbulent viscosity coefficient does not vary outside the
dynamic layer and is equal to its corresponding value at the outer edge of the dynamic layer [9].

Figure 1 shows results of calculations in the form of the Reynolds analogy coefficient 25t /cf as a func-
tion of Prandtl number Pr, for various values of the parameter Rex [for curve 1) Re, = 10% 2) Re, = 105;
3) Rey = 10° 1.

For comparatively low values of Re, and for values of Pr near unity, the resuits of the computations
agree well with the formula 2St/cf = Pr 06 (curve 4) and also with the value 1/0.863 (the point indicated by a
triangle) obtained in [10] by reducing experimental data for air (Pr = 0.7),

The computations also agree well with results obtained for Pr = 0.5-2 and 1.2°10° < Rex < 1.11. 10° in
[11] by numerical integration of the system of turbulent boundary-layer differential equations, using the Clau-
ser formula for the friction stress and the Cowles formula for the velocity distribution in the boundary layer
(points of the curves 1-3).

For large values of Re the analogy coefficient values differ substantially from the corresponding values
at low Re, The increase in Re leads to a growth for Pr > 1, and for Pr < 1 it leads to a reduction in the
analogy coefficient,

In order to obtain an approximation for calculating the heat-transfer coefficients we use the following
considerations, It was shown in [12] that for Pr — o the Stanton number is proportional to vcf/2. In addition,
it is well known that for Pr = 1 the Stanton number is proportional to cf /2 From this we can predict that
even for other Pr values there is a proportionality between St and (cf/2) , and that the exponent decreases with
increase of Prandtl number, from 1 at Pr =1 to 0.5 for Pr — «», From the relations given in Fig, 2 log St =
F(log cf /2}, obtained by calculation [for curve 1) Pr = 1000; 2) Pr= 100; 3) Pr = 10; 4) Pr =1; 5) Pr = 0.1; 6)

Pr = 0.01], itfollows that this proportionality actually occurs for Pr > 1. Here the corresponding values of
the exponent n are presented as a function of Prandtl number (curve 7). By replacing the curve n = f(log Pr) by )
two straight lines and determining the corresponding coefficients of proportlonahty between St and c¢ f/2 we
obtain the approximations

St = Pp-1.35(¢;/2)1-0.29'8FT ({ — Pp < 50); 3)
St = 0.113Pr~%4(c;/2)'* (Pr > 50). ' @)

Figure 3 compares the results of the calculatlon using the last formula with experimental data of [12]
ffor curve 1) Rex = 10% 2) Rey = 10% 3) Rex = 10%]. The calculated curves StV 2/0 = f(Pr), which merge into
one curve for large Prandtl numbers, were continued into the region Pr > 10° by calculatmg the slope of the
tangent at the point Pr = 10°,

Good agreement is observed between the computed experimental data: the coefficient of proportionality
is 0.113 in Eq, @), as determined by calculation, and it practically coincides with the value 0,115 determined
in [12] by comparison with experimental data, It can be seen from Fig, 3 that Eq, (4) describes the results
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obtained quite well for Pr > 50. For Pr < 50 the curves relating to different Res values diverge substantially,
Eq, (4) is no longer appropriate, and in the region 1 < Pr < 50 the results are described by Eq, (3). The fric-
tion factor appearing in Egs. (3) and (4) was determined from the equation

V2ie; = (1/x) In Re,, -+ 4.31, )

where Re, and Rex are connected by the relation' 7]

Re, == fics /2-Re,. ’ ®)

These two equations connect ¢, and ReX implicitly. Therefore, for the calculations it is more convenient to
use the Schlichting formula

cr = (2 1g Re, — 0.65)-22,

which gives results close to those obtained using Eqgs, (5) and (6).

From the data of Fig, 2 it can be seen that for Pr < 1 the results of the calculations cannot be approxi-
mated by functions of type (3) and (4): the dependence log(St) = f(log cf/Z) is nonlinear, However, it turns out

532



i T H
gNu : /1!/ i
f : x
. : ¢ x ’
9 ; ‘ !

;
5 5 7 9 1" 15 1gPe

X
Fig. 4
Nu_.,c v
V
]
&
0% 22
§2§)‘
1 -
i T
f t A’ﬁx
| i
w02 \r/.
prd 1
S i
o !
‘;*‘4 1 i i
P '
| | |
[ i !
i { P
0 { i i I [ i P
103 w0+ w0s w08 pe
Fig. 5

that for Pr < 1 there is a unique relation Nuy = t(Pey) at all the Re values. This is given in Fig. 4, where the
results obtained have been brought together on the graph log Nux = f({log Pey), and it can be seen that all the
points (denoted by circles) referring to the values Pr < 1 form a single curve, while the points (denoted by
crosses) referring to values Pr > 1 do not fall on the curve, ’

In Fig. 5 the relation obtained Nuy = 7s(Pe,) is compared with the results of experiments obtained in [13]
for air (%) and in [14] for liquid metals (+), It can be seen that the theoretical results are in good agreement
with the experimental data,

The unique relation Nuy = 7 (Pey) can be approximated by the formula

Nuz %9 = 1,04 —0.03351g Pe,,

analogous to the Schlichting formula for the friction factor, Simpler prwer relations can be obtained by approx~
imating to this relation by several relations, for example, as in Fig, 4, by three straight lines,

The straight line 1 was constructed according to the equation

Nu, = 0.282Pe)- % (108 < Pe,, < 105), -

and the straight line 2 was constructed by the relation

Nug == 0.247Pe2-%5, ®
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obtained in [9] for 103 < Rey < 2+10° and 0,005 < Pr < 0,05 with a logarithmic velocity profile in the layer
and a linear distribution of shear stress. It can be seen from Fig, 4 that with these values of Pey the results
of our calculations and Eq, (7) are in good agreement with Eq. (8).

For large values of the Péclet number the results of the calculations can be approximated by two analo-
gous relations (the straight lines 3 and 4 in Fig, 4):

Nu, = 0.036 Pel® (10° < Pe, < 5-108); 9
Nuy = 0.00576 Pel® (5 - 108 < Pe, << 2.5 - 1012), o

The approximations (9) and (10) are suitable for Pr < 1 and give good results right up to Pr =1 for large
Re numbers (Rey > 107).

The use of these formulas for low values of Re and Pr close to 1 leads to errors, which are 25% for
Rey =2 10° and Pr =1, In this region of the parameters the well-known relations can be used.

Equations (3), (4), (7), (9), and (10) span practically the whole range of parameters encountered.

In conclusion in Fig, 6 we present the dimensionless temperature profiles 6(y/6) in the boundary layer,
calculated using Eqgs. (1) and (2) for various values of Pr and Re s (the solid lines correspond to Rex = 10° and
the broken lines, to Re, = 109; for curves 1, 2, 3, and 4 Pr has the values 10'2, 1, 10, and 100), It follows from
the data of Fig, 6 that the Reynolds number has an appreciable influence on the temperature distribution in the

layer. This influence increases with decrease of Prandtl number and is qualitatively similar to the effect of
Prandtl number,
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EFFICIENCY OF A THERMAL CURTAIN

E, V., Shishov ) UDC 532.517.4

Gas curtains are widely used to protect surfaces washed by a high-enthalpy gas flow,

The main parameter describing the heat transfer under these conditions is the curtain efficiency

o Ty —To &
- - % ¥
TW s Tq 63‘ad
where T is the temperature of the unperturbed stream; T* is the adiabatic wall temperature; Ty, is the wall
temperature at the curtain entrance point; 6Tad is the energy loss thickness on the adiabatic wall; and 6** is

the energy loss thickness at the curtain entrance point, T

Several authors [1-3] have proposed analytical expressions to determine the efficiency of the thermal
curtain; in [2, 3] these expressions were given for the limiting case x — o,

However, in a number of cases of practical engineering importance the length of the protected surfaces
is small, and there is therefore 2 need for more accurate determination of thermal curtain efficiency in the
entrance section, An analytical expression for this case can be obtained from the following assumptions, It
is well known [1, 2] that under these conditions the law of superposition of thermal fields is applicable, and
one can therefore assume that a new thermal perturbation resulting from the effect of the wall being adiabatic
will grow in the existing thermal boundary layer in the same way as the thermal boundary layer grows under
the conditions of the preceding adiabatic section,

Figure 1 shows the temperature profile on an adiabatic wall (solid line), In order to show how a new
thermal perturbation develops, i.e., the region with zero temperature gradient, it is convenient to represent
the dimensionless temperature in the form

(wa_ T)[’(TW: - TD)'
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